Calibration of the Gaussian Musiela model using the Karhunen-Loeve expansion

نویسنده

  • Tiziano Vargiolu
چکیده

In this paper we calibrate the stationary Gaussian Musiela model to time series of market data using the Karhunen-Loeve expansion in order to get an ortonormal basis (classically known as EOF, empirical orthonormal functions) in a separable Hilbert space. The basis found is optimal for representing the covariance of the invariant measure of the forward rates’ process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison between Karhunen–Loeve and wavelet expansions for simulation of Gaussian processes

The series representation consisting of eigenfunctions as the orthogonal basis is called the Karhunen–Loeve expansion. This paper demonstrates that the determination of eigensolutions using a wavelet-Galerkin scheme for Karhunen–Loeve expansion is computationally equivalent to using wavelet directly for stochastic expansion and simulating the correlated random coefficients using eigen decomposi...

متن کامل

Simulation of strongly non-Gaussian processes using Karhunen–Loeve expansion

The non-Gaussian Karhunen–Loeve (K–L) expansion is very attractive because it can be extended readily to non-stationary and multidimensional fields in a unified way. However, for strongly non-Gaussian processes, the original procedure is unable to match the distribution tails well. This paper proposes an effective solution to this tail mismatch problem using a modified orthogonalization techniq...

متن کامل

Model Reduction, Centering, and the Karhunen-Loeve Expansion

We propose a new computationally efficient modeling method that captures existing translation symmetry in a system. To obtain a low order approximate system of ODEs prior to performing Karhunen Loeve expansion we process the available data set using a “centering” procedure. This approach has been shown to be efficient in nonlinear scalar wave equations.

متن کامل

A stochastic approach to nonlinear unconfined flow subject to multiple random fields

In this study, the KLME approach, a momentequation approach based on the Karhunen–Loeve decomposition developed by Zhang and Lu (Comput Phys 194(2):773–794, 2004), is applied to unconfined flow with multiple random inputs. The log-transformed hydraulic conductivity F, the recharge R, the Dirichlet boundary condition H, and the Neumann boundary condition Q are assumed to be Gaussian random field...

متن کامل

Enhanced Gaussian processes and applications

We propose some construction of enhanced Gaussian processes using Karhunen-Loeve expansion. We obtain a characterization and some criterion of existence and uniqueness. Using roughpath theory, we derive some Wong-Zakai Theorem. Mathematics Subject Classification. 60G15, 60G17. Received July 2, 2007. Revised October 5, 2007. 1. Generalities In [13] Lyons developed a general theory of differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000